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Abstract 1 

A new instrument capable of measuring aerosol size distributions with high time and size 2 

resolution, and high signal-to-noise ratios is described. The instrument, referred to as Fast 3 

Integrated Mobility Spectrometer (FIMS), separates charged particles based on their electrical 4 

mobility into different trajectories in a uniform electric field.  The particles are then grown into 5 

super-micrometer droplets, and their locations on the trajectories are recorded by a fast CCD 6 

imaging system.  Images captured by the CCD reveal mobility-dependent particle positions and 7 

their numbers, which are then used to derive a particle size distribution spectrum. By eliminating 8 

the need to scan over a range of voltages, FIMS significantly improves the measurement speed 9 

and counting statistics.  A theoretical framework has been developed to quantify the 10 

measurement range, mobility resolution, and transfer function of the FIMS. It is shown that 11 

FIMS is capable of measuring aerosol size distributions with high time and size resolution. 12 

 13 
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1. INTRODUCTION 1 

Real-time measurement of particle size distributions, especially in the nanometer size 2 

range, is important in many applications such as measurement of atmospheric aerosols and 3 

characterization of particles in combustion systems. To capture transient aerosol dynamics 4 

occurring on very small time scales, such as in high temperature environments or other 5 

nucleation-dominated systems, fast measurements are often necessary. In other types of 6 

measurements, such as aircraft-based measurements aimed at characterizing spatial and temporal 7 

distributions of atmospheric aerosols, high time resolutions are required to capture the variations 8 

of aerosol properties over small spatial domain.  9 

Sub-micrometer aerosol size distributions are mostly measured using electrical mobility 10 

techniques, especially for particles with diameter less than 100 nm. There have been 11 

considerable advances in electrical mobility based measurements, from early on being time-12 

intensive to state-of-the-art scanning mobility techniques that take only a few minutes to 13 

characterize an entire size distribution spectrum (Flagan, 1998). Electrical mobility based 14 

measurement system often consists of two components: a Differential Mobility Analyzer (DMA) 15 

that selects particles within a narrow mobility window (Knutsen and Whitby, 1975), and a 16 

detector that counts the number of particles within the classified window of mobility. In its early 17 

days, mobility based measurements were made by stepping the classifying voltage of the DMA 18 

through a sequence of values to reproduce an entire size distribution, and the measurement time 19 

was on the order of 10 minutes or more. Wang and Flagan (1989) introduced the scanning 20 

mobility technique in which the classifying voltage of DMA is continuously scanned.  As a 21 

result, the time required to measure aerosol size distribution could be substantially reduced to 22 

about 1 minute.  Systems using the scanning mobility technique are often referred to as Scanning 23 

Mobility Particle Sizers (SMPS).  24 

There are two obstacles for further accelerating SMPS measurements. First, faster 25 

measurements often result in severely distorted size distributions, which are attributed to the 26 
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large smearing effect of traditional condensation particle counters (CPCs) used as detectors 1 

(Russell et al., 1995). To reduce the smearing effect, the scanning mobility techniques have been 2 

augmented with time-sensitive detectors. Wang et al. (2002) developed a fast-response mixing 3 

condensation nucleus counter (MCNC).  They reduced the measurement time to about 3 s by 4 

using the MCNC as a detector in SMPS (Wang et al., 2002). The second obstacle to faster SMPS 5 

measurements is the low sampling rate and the associated low counting statistics. SMPS systems 6 

are based on a sequential measurement technique.  Only particles within a narrow range of 7 

mobility, which comprise a small fraction of the total aerosol particles introduced into the 8 

instrument, are measured at a given time.  Whereas, time-sensitive detectors may allow faster 9 

measurements, the low counting statistics often require averaging fast measurements over a 10 

longer period of time to obtain statistically significant results. This further effectively offsets the 11 

reduction in measurement time gained by using the time-sensitive detectors. Other electrical 12 

mobility based instruments include the Electrical Aerosol Spectrometer (EAS) developed by 13 

Mirme et al. (1984) (Mirme et al., 1994; Tammet et al., 1998; Tammet et al., 2002).  An EAS 14 

uses an array of integrated electrometers that operate in parallel in a DMA-like geometry. Since 15 

particles of different mobilities are detected simultaneously, EAS is capable of sub-second 16 

measurements of aerosol size distributions.  Due to the relatively low sensitivity of the 17 

electrometers, application of EAS is limited to aerosols with high number concentrations. The 18 

EAS has been commercialized by TSI Inc. as Engine Exhaust Particle Sizer (EEPS), and is 19 

primarily used for characterizing high concentration engine exhausts (Johnson et al., 2004).  20 

Besides low sensitivity, EAS and EEPS also have considerably lower size resolution compared 21 

to SMPS.  22 

The other type of instruments that are frequently used to measure sub-micrometer aerosol 23 

size distributions are Optical Particle Counters (OPCs).  For OPC measurements, particle sizes 24 

are derived from the intensity of light scattered by particles.  Optical particle counters (OPC) 25 

offer fast measurement speed and better counting statistics compared to SMPS. However, the 26 

measurement range of OPCs is limited to particles with diameters greater than 100 nm. Also, 27 
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particle physical properties such as shape, refractive index, and morphology have strong 1 

influences on derived particle sizes, and are often unavailable.  Even for the ideal case of 2 

homogeneous spherical aerosol particles, the uncertainty in refractive index often leads to 3 

significant uncertainties in derived size distributions (Hering and McMurry, 1991).  Furthermore, 4 

the interpretation of OPC data is often complicated by Mie resonances in the intensity of light 5 

scattered by spherical particles. 6 

Besides SMPS and OPCs, a nucleation-mode aerosol size spectrometer (N-MASS) has 7 

been recently developed for fast size distribution measurements onboard a research aircraft 8 

(Brock et al., 2000). N-MASS consists of five condensation particle counters operated in parallel 9 

at different supersaturations. While N-MASS offers faster measurement speed and better 10 

counting statistics than conventional SMPS, it has limited size resolution (5 size bins), and the 11 

measurements are limited to particle diameters less than ~80 nm.   12 

In this paper, we describe a new instrument to measure submicron aerosol size 13 

distributions with high time and size resolutions, and high signal-to-noise ratios. The instrument, 14 

referred to as Fast Integrated Mobility Spectrometer (FIMS), separates charged particles based 15 

on their electrical mobility. Separated particles are then grown, along their trajectories, into 16 

super-micrometer droplets in a supersaturation environment and their locations with respect to 17 

the electrodes are subsequently detected by a particle imaging system. The imaging system 18 

records mobility-dependent particle positions and their numbers, which are then used to derive 19 

particle size distribution spectrum.  By eliminating the need to scan over a range of voltages, 20 

FIMS significantly improves measurement speed and counting statistics. FIMS can perform size 21 

distribution measurements with high accuracy and precision in less than a second. This is about a 22 

factor of 50 improvement in the time resolution over traditional SMPS systems. The FIMS has a 23 

great advantage over the traditional SMPS in applications involving transient aerosol dynamics, 24 

or where measurements with high time resolutions are required.  25 
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2. WORKING PRINCIPLE OF FIMS 1 

The main geometry of FIMS involves a rectangular conduit formed by two parallel plates 2 

as shown in Fig. 1(a) and (b). The geometry can be divided into three major sections arranged 3 

sequentially— (i) separator, (ii) condenser, (iii) and a detector. As shown in Fig. 1, particle-free 4 

sheath flow saturated with a condensing fluid—taken as n-butanol in this work—enters the 5 

channel parallel to the electrodes from the entrance to the separator.  A much smaller aerosol 6 

flow (Qa) carrying charged aerosol particles is introduced into the separator, through a narrow 7 

tangential slit that provides a turbulence-free entry.  The separator consists of two parallel plate 8 

electrodes that generate a uniform electric field in the flow passage.  Under the influence of 9 

uniform electrical field, the charged aerosol particles are separated into mobility-dependent 10 

trajectories.  The classified particles subsequently enter the condenser where they are subject to 11 

in situ growth by condensation of n-butanol contained in the sheath flow. The body of the 12 

condenser is isolated from the separator section using electrical insulation. The supersaturation 13 

required for condensational growth of particles is created by cooling the walls of the condenser 14 

to 5oC.  No electrical field is applied in the condenser; therefore, once the aerosol particles exit 15 

the separator, their positions in the direction of the electric field (x-coordinate) practically remain 16 

unaltered. If a proper combination of cooling temperature and residence time is maintained 17 

inside the condenser, aerosol particles will grow into super-micrometer droplets by the time they 18 

reach the detection zone, which makes their optical detection using a charge-coupled device 19 

(CCD) camera feasible.   20 

Since the flow in the channel is a well-developed laminar flow, the displacement of a 21 

particle in the direction of the electric field (referred to as x-direction hereafter) is a function of 22 

its electrophoretic velocity in the x-direction, and hence a function of its electrical mobility. In 23 
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other words, the x-coordinate of the particle at the exit of condenser can be directly related to its 1 

electrical mobility. A collimated laser beam is used to illuminate the particles as they exit the 2 

condenser, and their locations with respect to the two electrodes are subsequently recorded by a 3 

high speed CCD camera.  Images recorded by the camera reveal the positions of particles and 4 

their numbers, which can be directly used to derive the mobility, and hence aerosol size 5 

distribution. As typical CCD cameras can easily acquire images at frame rates of 10 HZ or more, 6 

sub-second measurements of particle size distribution are quite feasible using the FIMS. By 7 

integrating the classification, detection and counting in a single geometry, FIMS eliminates the 8 

need for voltage scanning that limits the measurement speed in conventional SMPS. 9 

The electrical mobility of a particle ( pZ ) inferred from its x-coordinate in the detection 10 

zone depends primarily on the FIMS dimensions including, the distance between the two parallel 11 

plates (a), the length of separator (ls), the voltage (V) applied across the electrodes, the sheath 12 

(Qsh) and aerosol flow rate (Qa).  Design of a functional instrument requires knowledge of 13 

relationships between these variables. Transfer theory for non-diffusing particles is developed 14 

and is discussed below. 15 

  16 

3. TRANSFER THEORY FOR NON-DIFFUSING PARTICLES 17 

The aerosol particles in FIMS are classified based on their electrophoretic drift velocity 18 

(vE) in the uniform electrical field (Ex).  The electrophoretic drift velocity is given by 19 

E p xv Z E= ,           (1) 20 

where pZ  is the electrical mobility of the particle: 21 

 
3π µ

= c
p

p

q CZ
d

 ,          (2) 22 
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where q is the total electrical charge on the particle, Cc is Cunningham slip correction factor, µ is 1 

viscosity of suspending medium, and pd  is the diameter of the particle. The overall transport of 2 

particles in the rectangular channel, however, depends on the electrophoretic migration described 3 

by above equation, as well as on the aerodynamic flow. In the following analysis, only the 4 

central region of the channel cross- section (in x-z plane) is considered, where the flow field is 5 

uniform along the z-direction. The flow field in the central region of parallel plate geometry can 6 

be described using a two-dimensional stream function Ψ(x, y), which is defined in Cartesian 7 

coordinates as 8 

 
,

( , )
x y

y xx y u dx u dy Ψ ≡ − ∫ ,         (3) 9 

where ux and uy are fluid flow velocities in the x- and y-direction, respectively.  Similarly, an 10 

electric flux function Φ is defined as 11 

,

( , )
x y

y xx y E dx E dy Φ ≡ − ∫ ,         (4)  12 

where Ex and Ey are electrical field strengths in x- and y-direction, respectively. Note that Ey=0 in 13 

this study. Analogous to fluid stream function, non-diffusing particles follow trajectories that 14 

correspond to constant particle stream functions defined as (Knutson and Whitby, 1975),  15 

( , ) = constantpx y ZΓ ≡ Ψ + Φ .        (5) 16 

Consider a non-diffusing particle that is introduced into a separator section. It is then 17 

required to know the probability of finding a particle at a given location x or flow streamline Ψ  18 

at the end of separator (i.e. at y=ls,). As there is no change in the x-coordinate of the particle 19 

through the condenser (Ex=0 in condenser), it suffices to consider the probability density at y=ls.  20 

For non-diffusing particles an approach similar to that of Stolzenburg’s (1988) is used to derive 21 
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this probability density function, also referred to as the transfer function in this work. The 1 

definitions of key streamlines are shown in Fig. 2. Let 1,inΨ and 2,inΨ  be the two streamlines that 2 

bound the aerosol flow at the inlet. Subscripts in and out denote the location of a streamline at 3 

the entrance and exit of separator, respectively. The probability density function ( , )p outP Z Ψ , 4 

which dictates the probability of finding a particle with mobility pZ  that exits between 5 

streamlines Ψout and ( )out outdΨ + Ψ  is then given by 6 

2,

1,

( , ) ( ). ( , , )
in

in

p out out e in t nd p in out in outP Z d f f Z d d
Ψ

−
Ψ

 
Ψ Ψ = Ψ Ψ Ψ Ψ Ψ 

  
∫ ,     (6)  7 

where ( )e in inf dΨ Ψ  is the probability that the  particle is introduced between streamlines inΨ  8 

and ( )in indΨ + Ψ  at the separator entrance, and is given by 9 

2, 1,

1( )e in
in in

f Ψ =
Ψ − Ψ

.          (7) 10 

( , , )t nd p in out outf Z d− Ψ Ψ Ψ  in Eq. (6) is probability of a non-diffusing particle exiting the separator 11 

between streamlines outΨ  and ( outΨ + outdΨ ) when it enters the separator at inΨ .  Since the 12 

trajectory of a non-diffusing particle corresponds to a constant particle streamline function, this 13 

probability can be expressed as (Stolzenburg, 1988) 14 

( ) ( )( ) ( )( , , )t nd p in out out in out in p in out out in pf Z Z Zδ δ δ− Ψ Ψ = Γ − Γ = Ψ − Ψ − Φ − Φ = Ψ − Ψ − ∆Φ , (8) 15 

where δ is a delta function, and in out∆Φ = Φ − Φ .  The probability distribution function can be 16 

obtained by inserting Equation (7) and (8) into Eq. (6) as follows 17 

( )
2,

1,2, 1,

1( , )
in

in

p out out in p in
in in

P Z Z dδ
Ψ

Ψ

Ψ = Ψ − Ψ − ∆Φ Ψ
Ψ − Ψ ∫ .     (9) 18 

After performing the integration, the above equation can be rewritten as, 19 
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( ) ( )1, 2,
2, 1,

1 1( , )
2p out out in p out in p

in in

P Z H Z H Z Ψ = Ψ − Ψ − ∆Φ − Ψ − Ψ − ∆Φ Ψ − Ψ
  (10)  1 

where H(x) is a modified Heaviside step function defined as, ' '

0

( ) 2 ( )
x

H x x dxδ≡ ∫ . The value of 2 

H(x) is 1 for x>0, 0 for x =0, and -1 for x <0.  Eq. (10) gives the probability density of finding a 3 

non-diffusing particle with mobility pZ  at outΨ , and is graphically shown in Fig. 2(b).  As it is a 4 

subtraction of two Heaviside step functions, the shape of ( , )p outP Z Ψ  is a rectangle.  The value 5 

of ( , )p outP Z Ψ  is 
2, 1,

1

in inΨ − Ψ
 when 1, 2,in p out in pZ ZΨ + ∆Φ < Ψ < Ψ + ∆Φ , and zero elsewhere.  6 

Consider trajectories of particles introduced along the centroid flow streamline, 1, 2,

2
in inΨ + Ψ

 at 7 

the aerosol inlet; since the particle streamline function remains constant along particle 8 

trajectories,  9 

1, 2,
, , , , ,2

in in
c out p c out c in p c in p c inZ Z Z

Ψ + Ψ
Ψ + Φ = Ψ + Φ = + Φ .     (11) 10 

From Eq. (11), the particle mobility Zp is expressed as, 11 

1, 2, 1, 2,
, ,

, ,

2 2
in in in in

c out c out

p
c in c out

Z

Ψ + Ψ Ψ + Ψ
Ψ − Ψ −

= =
Φ − Φ ∆Φ

.      (12) 12 

In order to facilitate subsequent discussion on measurement resolution and performance 13 

of FIMS, a new variable called instrument response mobility *
pZ  is introduced, and is defined as 14 

1, 2,
* 2

in in
out

pZ
Ψ +ΨΨ −

≡
∆Φ

.           (13) 15 

The instrument response mobility *
pZ  is uniquely related to outΨ according to the above equation. 16 

From this definition it then follows that, when a particle with mobility pZ  is introduced at the 17 
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inlet, the probability of its mobility being measured between *
pZ and ( )* *

p pZ dZ+  is given 1 

by * *( , ) ( , )p p p p out outP Z Z dZ P Z d= Ψ Ψ .  The probability density function based on the new 2 

variable *
pZ  is given by 3 

 

( ) ( )

*
*

1, 2,
2, 1,

( , ) ( , )

( , )

1 .
2

Ψ
= Ψ

= Ψ ∆Φ

∆Φ  = Ψ − Ψ − ∆Φ − Ψ − Ψ − ∆Φ Ψ − Ψ

out
p p p out

p

p out

out in p out in p
in in

dP Z Z P Z
dZ

P Z

H Z H Z

  (14) 4 

*( , )p pP Z Z  can be further simplified, by inserting Equation (13) into Eq. (14), to the following 5 

form: 6 

2, 1,* *

2, 1,

2, 1,*

* * * *
*

*
*

1( , )
2 2

                           
2

1 1 1
2 2 2

1
2

in in
p p p p

in in

in in
p p

p p p p p p
p

p
p

P Z Z H Z Z

H Z Z

H Z Z Z H Z Z Z
Z

H Z
Z

 Ψ − Ψ ∆Φ
= ∆Φ + − ∆Φ −  Ψ − Ψ  

Ψ − Ψ  
∆Φ − − ∆Φ  

 
       = ∆Φ − + ∆ − ∆Φ − − ∆       ∆        

=
∆

* * *

2, 1,*

1 1 ,
2 2

where .

p p p p p

in in
p

Z Z H Z Z Z

Z

       − − ∆ − − + ∆              

Ψ − Ψ
∆ =

∆Φ

   (15) 7 

Fig. 2(c) graphically depicts the nature of *( , )p pP Z Z  for non-diffusing particles.  8 

Comparing Eq. (12) and (13), it can then be seen that particles that enter on the centroid 9 

streamline (i.e. ,c inΨ ) at the aerosol inlet will have the instrument response mobility ( *
pZ ) the 10 

same as their particle mobility ( pZ ).  *( , )p pP Z Z  characterizes the response of the instrument to 11 

non-diffusing particles with mobility pZ , which is a distribution shown in Fig. 2(c).  The centroid 12 
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of this distribution is located at the particle mobility pZ , and the probability is constant between 1 

*1
2

 − ∆ 
 

p pZ Z  and *1
2

 + ∆ 
 

p pZ Z . The spread of the probability density function *( , )p pP Z Z  (also 2 

referred as the transfer function) is an indicator of measurement uncertainty. For non-diffusing 3 

particles, the uncertainty is caused by finite width of aerosol flow stream.  Particle diffusion 4 

contributes to additional uncertainty in mobility measurements, and will be discussed in detail 5 

later.  6 

From the definition of the flow streamline function, we have 7 

1,
0 0

1 ( )' '
x x

out in y y
Q xu dx b u dx

b b
 

Ψ − Ψ = = ⋅ = 
 

∫ ∫ ,      (16) 8 

where ( )Q x  is the volumetric flow rate of the flow between the streamlines outΨ  and 1,inΨ , and 9 

x  the location of outΨ  at the separator exit.  Similarly, it can be shown that 10 

2, 1,in in aQ bΨ − Ψ = ,          (17) 11 

0

∆Φ = − =∫
s

x x s
l

E dy E l .          (18) 12 

The forgoing analysis assumes uniform flow field in z-direction. In other words, only the 13 

central region of the separator cross section (in x-z plane) is considered, and the edge effects 14 

from channel walls (in x-y planes) on both sides of the view region are neglected. 15 

Correspondingly, all flow rates used in the analysis are based on two-dimensional flow field 16 

extending to a full width (b) of the separator channel (see Fig 2). The analysis is substantially 17 

simplified by using this “effective” flow rate. However the actual flow rate in the corresponding 18 

geometry in FIMS will be slightly lower than this “effective” flow rate due to channel walls in 19 
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the x-y plane. Instrument response mobility *
pZ  can be obtained, by inserting Eq. (17) and (18) 1 

into Eq. (13), as follows 2 

* 2( ) aQ

p
s x

Q xZ
bl E

−
= .          (19) 3 

The flow field in the central region of the separator can be described by a two-dimensional flow 4 

between two parallel plates, with a parabolic velocity profile given by (Bird et al., 1960), 5 

( )6( ) 1 ,      0 1t
y

Qu x x x x
ab

= − ≤ ≤            (20) 6 

where x  is the normalized x-coordinate defined as x
ax = , and tQ  the total flow rate through the 7 

separator, and is sum of aQ and shQ .  ( )Q x  can be expressed as follows by using Eq. (20), 8 

( )2 3

0

( ) ( ') ' 3 2
x

y tQ x ab u x dx Q x x= = −∫ .       (21)  9 

Eq. (19) can be used along with Eq. (21) to calculate instrument response mobility *
pZ  for a 10 

given x . 11 

Eq. (19) shows that maximum mobility,
max

*
pZ , measured by FIMS corresponds to 12 

( 1) tQ x Q= = .  Let β denote the ratio of aerosol to sheath flow rate ( )a shQ Q . Then the total flow 13 

rate can be expressed as ( )1
t aQ Q β

β
+= .  Then following equation for response mobility can be 14 

obtained by using the definitions of 
max

*
pZ and β, along with Eq. (19) and (21), 15 

( )( )
max

2 3*

*

2 1 3 2
2

p

p

x xZ
Z

β β

β

+ − −
=

+
. (22) 16 

For β <<1 (β=0.02 for suggested operating conditions), the above equation can be further 17 

simplified (within 1% accuracy) to: 18 
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( )( )
max

*
2 3

2* 1 3 2p

p

Z
x x

Z
ββ= + − − .        (23) 1 

 2 

4. DESIGN CONSIDERATIONS 3 

4.1 Mobility resolution and instrument measurement range 4 

As discussed earlier, the maximum mobility (
max

*
pZ ) that can be measured in a single 5 

geometry is obtained when ( 1) tQ x Q= = , and is given by, 6 

( )
( )max

2
2* 2

aQ
at a

p
s x s x s x

QQ QZ
bl E bl E bl E

β
β

β

+
−

= = ≅ .       (24) 7 

Similarly, the minimum mobility (
min

*
pZ ) is obtained when ( ) aQ x Q= , and is given by, 8 

( )min

*

2
a

p
s x

QZ
bl E

≅ ,          (25) 9 

min

*
pZ and 

max

*
pZ represent the maximum range of particle mobilities that can be measured in a 10 

single FIMS unit. Theoretically, for β=0.02, range covering a factor of 50 in electrical mobility 11 

can be measured in a single FIMS unit.  However, the practical useful range can only be obtained 12 

by examining the uncertainties associated with the mobility measurements over this range.  13 

Assuming the particle position at the separator exit can be measured with sufficiently high 14 

accuracy, for a non-diffusing particle the uncertainty in measured mobility can be attributed to 15 

the finite stream width of aerosol flow. However this uncertainty, characterized by *
pZ∆ , can be 16 

readily obtained by examining the width of probability density function *( , )p pP Z Z given by 17 

Eq.(15). Thus,  18 
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2, 1,* in in a
p

s y

QZ
bl E

Ψ − Ψ
∆ = =

∆Φ
.         (26) 1 

Eq. (26) shows that the uncertainty in instrument response mobility is constant regardless of the 2 

particle mobility.  Comparing Eq. (24) and (26), *
pZ∆  can be rewritten as, 3 

* *
maxp pZ Zβ∆ = .          (27) 4 

To quantify the relative uncertainty in measured mobility, which is often more important than the 5 

absolute uncertainty itself, mobility resolution R is introduced, and is defined as (Flagan, 1999), 6 

*
p

fwhh

Z
R

Z
=

∆
,           (28) 7 

where, *∆ fwhhZ  is full width of the probability density function at half its maximum height.  For 8 

non-diffusing particles, * *
fwhh pZ Z∆ = ∆ , and R is given by, 9 

 *
p

p

Z
R

Z
=

∆
,           (29) 10 

where the definition of the *
pZ∆  is given in Eq. (26).  A higher resolution corresponds to lower 11 

relative uncertainty in measured particle mobility.  An expression for resolution R can be 12 

obtained by inserting Eq. (19) and (26) into Eq. (28) as, 13 

( )
max max

2
* * *

1
β β

−
= = ≅ =

∆

aQ
p p

p a p p

Z ZQ x
R

Z Q Z Z
,       (30) 14 

where max

max

*
* = p
p

p

Z
Z

Z
. As *

pZ∆  is constant, the mobility resolution R increases with increasing pZ .  15 

The resolution reaches its maximum value max
1R
β

=  at the maximum response mobility 16 

max

*
pZ (

max

* 1pZ = ).  At β=0.02, Rmax ≈ 50. If the minimum acceptable resolution (Rmin) is set to 5, 17 
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we have Rmin=0.1× maxR , and
min max

* *0.1p pZ Z= × . Thus a decade of mobility can be measured in a 1 

single FIMS unit with acceptable resolutions.  Four FIMS units, operating simultaneously, will 2 

be required to measure the entire sub-micrometer size range, from 5 to 1000nm, with highest 3 

possible time resolution.  Based on the above analysis, the key dimensions of four FIMS units 4 

have been calculated and are listed in Table 1(a).  It is worth pointing out that, even though the 5 

dimension of the flow channel are 1cm×10cm (in x-z plane) according to Table 1(a), the actual 6 

area of interest is the central 1cm×5.6cm portion of the channel.  In other words, only particles 7 

detected in this region are used to derive particle size distributions. This is to avoid the edge 8 

effects of flow introduced by the channel walls in x-y plane. The physical dimensions are the 9 

same for Units 2-4, and the only difference is the voltage applied across the electrodes. As Unit 1 10 

measures particles in the lowest size range, the length of plate electrode is reduced to 5 cm to 11 

minimize degradation of resolution of small particles due to Brownian diffusion. The separator 12 

voltage for each unit is listed in Table 1(b) at three different flow rates.  It is worth noting that 13 

the choice of physical dimensions and operating conditions given here is only one from many 14 

possibilities. For instance, the measurement range of a single FIMS can be increased to a factor 15 

of 20 in mobility by operating at a higher flow rate ratio β=0.01 (with a minimum resolution of 16 

5).  If the same total flow rate Qt is maintained, the reduced aerosol flow rate at β=0.01 will lead 17 

to lower counting statistics.  On the other hand, if the same aerosol flow rate is maintained at 18 

β=0.01, the total flow rate Qt will double, and a longer condenser will be required to grow 19 

particles into detectable droplets. For different measurement requirements, the physical 20 

dimensions and operating conditions can be optimized to achieve the best combination of 21 

measurement range, resolution, and counting statistics.  22 
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The physical dimensions and the flow rates of the FIMS directly influence the degree of 1 

saturation that can be attained in the condenser, which in turn determine whether the particles 2 

will grow into optically detectable droplets.  In general, a longer condenser and a shorter distance 3 

between the plates will lead to higher supersaturations.  Detailed numerical simulations were 4 

carried out to model the performance of the instrument with a focus on degree of supersaturation 5 

and growth kinetics of particles in the condenser, and are discussed below. 6 

 7 

4.2 Saturation Profile in Condenser 8 

Simulations were performed to obtain the contour profile of saturation ratios of n-butanol 9 

in the condenser using the FIMS dimensions listed in Table 1(a). Simulations involving discrete 10 

particle transport that incorporated their convective and diffusional transport and their 11 

condensational growth were also performed to estimate their final droplet sizes in the detection 12 

region.  13 

Coupled partial differential equations describing momentum transfer (to obtain flow 14 

velocities in x-, and y-direction), mass transfer (spatial distribution of n-butanol), and heat 15 

transfer (temperature profile) were first solved using multiphysics computing software 16 

(FEMLAB 3.0; Comsol, Inc.) employing finite element methods (FEM). A simplified, 2D 17 

parallel-plate geometry representing the main rectangular conduit in x-y plane was considered in 18 

the computations (Fig. 1(b)). Sufficiently long entrance region was provided before the separator 19 

to allow fully developed laminar flow in the channel. A 2 cm buffer zone (in y-direction) was 20 

provided to electrically insulate the separator HV electrode from the condenser. Aerosol flow 21 

was introduced through a narrow slit, 1 mm wide, into the separator at an angle of 30o. The 22 

temperature of aerosol and sheath flow entering the channel was assumed at 25oC. The sheath 23 
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flow entering the separator was assumed saturated with n-butanol. The walls of the separator 1 

were maintained at 30oC, and that of condenser were kept at 5oC.  The vapor pressure of butanol 2 

(p) at the channel walls was assumed to be in equilibrium with local temperature, i.e. satp p= , 3 

and was computed using Antoine equation listed in Table 2. The local saturation ratio was 4 

defined as satS p p= , where p is the local vapor pressure of butanol. The Kelvin equivalent 5 

diameters (
Kelpd ) associated with the saturation ratio was also calculated using the following 6 

equation 7 

4
log

σ
ρ

=
Kel

s b
p

l

Md
RT S

, (31) 8 

where R is universal gas constant, and S is saturation ratio. The definitions of remaining terms in 9 

the above equation, and their values used in computation are listed in Table 2. To obtain a 10 

conservative estimate, calculations for supersaturation ratios were performed at a total flow rate 11 

of Qt=15 lpm. 12 

Fig. 3 shows contour plots of the saturation ratios (black solid lines) and equilibrium 13 

Kelvin diameters (grey dotted lines) in the condenser of the FIMS. Saturation ratios are 14 

substantially higher than 1 in most part of the condenser, and high saturation ratios up to 5 occur 15 

in the central region of the condenser.  The corresponding equilibrium Kelvin diameter (
Kelpd ), 16 

which represents the diameter of the smallest particles that can be activated, is less than 5nm in 17 

almost entire condenser region.  In an actual system, the saturation ratios could be slightly lower 18 

compared to the values shown in Fig. 3 due to butanol depletion onto particles and non-idealities 19 

in temperature control.  The butanol concentration of the sheath flow also influences the final 20 

saturation ratios attained in the condenser. 21 

 22 
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4.3. Particle Transport and Growth Simulations 1 

To ensure that particles grow into optically detectable sizes once they are activated, 2 

calculations were performed to obtain the final sizes of grown droplets at the end of the 3 

condenser. Simulations involving discrete Brownian motion and convective transport of particles 4 

were performed using a Brownian dynamics approach. The flow, temperature, and saturation 5 

profiles were obtained from FEM simulations described earlier. The motion of the particle was 6 

modeled using a modified Langevin equation (Ermak, 1975) 7 

( , )
( ) ( ) ( )p

f ext G
B

D T d
t t t t t

k T
δ

 
+ ∆ = + + ∆ + 

 
r r v F r ,      (32) 8 

where ( )t t+ ∆r  is the position vector of particle at time ( )t t+ ∆ , ( )tr is the position vector at time 9 

t, fv  is the deterministic particle velocity vector resulting from fluid flow, ( , )pD T d  is the 10 

temperature-, and size-dependent self-diffusion coefficient of particle, ( )ext tF  is the total external 11 

force vector acting on the particle, kB is the Boltzmann’s constant, and T is the temperature of 12 

surrounding fluid. Gδr  in the above equation represents Gaussian random displacement due to 13 

particle diffusion and is chosen independently from a Gaussian distribution with a zero mean and 14 

variance equal to 2( ) 2G D tδ δ=r .  15 

Simulations involved releasing a particle of given diameter at x=0 with their y-coordinate 16 

randomly distributed over the aerosol entrance slit, followed by evolving its trajectory in finite 17 

time steps ∆t according to Eq. (32). The particle was also subject to condensational growth 18 

according to the following growth law (Seinfeld and Pandis, 1998) 19 

' '

4exp

1
4 4

b s

l pp
p

l v l v b

sat v b a

MS
RT ddd

d
RT H H Mdt

p D M k T RT

σ
ρ

ρ ρ

 
−   

 =
∆ ∆ + − 

 

. (33) 20 
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Table 2 lists notations and values of key parameters used in the above equation. Fig. 4 shows 1 

trajectories of both charged and uncharged particles with diameters of 16, 26, 36, and 47nm in 2 

Unit 2 at Qt=15 lpm, and Qa=0.3 lpm.  The Brownian nature of trajectories is clearly visible. 3 

Also, note as particles enter the condenser, they quickly grow into larger droplets, resulting in 4 

negligible Brownian motion, and changes in their x-coordinate in the condenser.  Table 3 5 

compares the x-coordinate of particles at the end of separator and condenser. The change in x-6 

coordinate is indeed negligible. It is worth noting that these numerical simulations account for 7 

changes in flow velocities due to the nonuniform temperature profile in the condenser. The lower 8 

temperatures near the condenser walls lead to contraction of the flow, and the flow streamlines 9 

deviate outward at the entrance of the condenser. Such bending of flow streamlines may lead to a 10 

shift in particle position at the condenser exit with respect to its position at the separator exit. 11 

However, the simulations indicate that for the intended operating conditions of the instrument, 12 

any such effects originating from temperature gradient are negligible. 13 

Fig. 4 also shows simulated trajectories of uncharged particles. Since uncharged particles 14 

do not experience any electrostatic force in the separator, their trajectories remain close to the 15 

ground electrode. Due to large residence times these particles also experience large diffusional 16 

spreading. However their transport is still confined to a narrow region near the ground electrode, 17 

ensuring that they do not interfere with measurement of charged particles. 18 

Fig 4 also shows the contour profiles of grown droplet diameters in the condenser. The 19 

growth calculations were based on a particle with an initial diameter of 5 nm, following various 20 

particle trajectories in the condenser.  The condensational growth is calculated using the flow, 21 

temperature, and saturation profiles obtained from FEM simulations described earlier. The 22 
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calculations demonstrate that particles as small as 5 nm can be grown into optically detectable 1 

droplets (>120 µm) using the proposed geometry and operating conditions. 2 

 3 

4.4 Counting Statistics of FIMS measurements. 4 

The improved time resolution of measurements often comes at the expense of reduction 5 

in counting statistics. The instrument design directly influences the counting statistics of size 6 

distribution measurements, and may limit the maximum frequency with which statistically 7 

significant results can be obtained. Counting statistics of FIMS measurements, using the 8 

proposed instrument geometry and flow conditions shown in Table 1(a)-(b), were investigated 9 

and are discussed below. 10 

For each size bin, the uncertainty ( cσ ) of particle counts measured by FIMS can be 11 

approximated, based on Poisson statistics, as c Cσ ≈ , where C is the number of particle counts 12 

detected in the corresponding size bin.  C can be estimated as 13 

ln
ln

ln ln
p

a c a c p
p p

d ddNC Q t N Q t Z
d d d Z

η η
  

= ⋅∆ = ⋅ ∆    
  

,      (34) 14 

where tc is the sampling time, η is the particle bipolar charging probability, and N is the particle 15 

number concentration.  The signal to noise ratio is given by C C
C

= .  Assuming that the 16 

counts detected by each unit of FIMS are grouped into ten mobility size bins (evenly spaced on a 17 

logarithm scale), and noting that each unit covers a factor of 10 in mobility, we have 18 

10/)10(lnln =∆ pZ . The counting statistics for measurement of typical remote continental and 19 

marine aerosol (Seinfeld and Pandis, 1998) were calculated using Eq. (34), and the results are 20 

shown in Fig. 5.  FIMS provides substantial improvements in measurement counting statistics 21 
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over traditional SMPS.  For typical remote continental aerosols, 1s measurement time is 1 

sufficient to obtain excellent counting statistics. For clean marine aerosols, measurement time of 2 

8 s reasonably captures the main characteristics of the aerosol size distribution.  The counting 3 

statistics of FIMS could be further improved by increasing the width b of the instrument channel 4 

and the aerosol flow rate.   5 

 6 

5. EFFECT OF PARTICLE DIFFUSION ON FIMS TRANSFER 7 

FUNCTION 8 

Knowledge of FIMS transfer function (or probability density function) that accounts for 9 

all measurement uncertainties is necessary in order to accurately derive aerosol size distributions 10 

from FIMS measurements. For non-diffusing particles, the uncertainty in measured mobility can 11 

be entirely attributed to finite stream width of aerosol flow. This uncertainty was discussed 12 

earlier, and the transfer function for a nondiffusing particle is given by Eq. (15).  However, small 13 

particles with high diffusivity could further substantially increase the measurement uncertainties.  14 

Stolzenburg (1988) investigated the role of particle Brownian diffusion on the shape of DMA 15 

transfer function using an approach similar to that used by Tammet (1967) in his analysis of ion 16 

diffusion in aspiration condenser. More recently, Salm (2000) proposed a different approach to 17 

account for broadening of transfer function due to particle Brownian diffusion and/or turbulent 18 

diffusion. In this work we further extend the theoretical analysis developed earlier, which is 19 

similar to that of Stolzenburg (1988), to take into account the effect of particle Brownian 20 

diffusion on the FIMS transfer function ( , )p outP Z Ψ .  21 

For a particle with mobility Zp, the transfer function is given by 22 
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2,

1,

( , ) ( ). ( , , )
in

in

p out e in t d p in out inP Z f f Z d
Ψ

−
Ψ

Ψ = Ψ Ψ Ψ Ψ∫ ,      (35) 1 

where the definition of ( )e inf Ψ  remains the same as in Eq. (7).  ( , , )t d p in outf Z− Ψ Ψ  is modified 2 

to include particle Brownian diffusion, and is given by (Stolzenburg, 1988) 3 

2
1 1( , , ) exp

22t d p in outf Z
σπσ−

ΓΓ

  ∆Γ
 Ψ Ψ = −  
   

,      (36) 4 

where σ Γ , known as spread factor, is the standard deviation of Γ. Calculation of spread factor 5 

will be discussed in detail later.  From the definition of Γ given in Eq.(5), ∆Γ can be expressed 6 

as, 7 

out in out in pZ∆Γ = Γ − Γ = Ψ − Ψ − ∆Φ         (37) 8 

Combining Eq. (35), (36), and (37), the probability density function ( , )Ψp outP Z  for a diffusing 9 

particle can be expressed as 10 

2,

1,

2

2, 1,

1 1 1( , ) exp
22

in

in

out in p
p out in

in in

Z
P Z d

σπσ

Ψ

ΓΨ Γ

  Ψ − Ψ − ∆Φ
 Ψ = − Ψ  Ψ − Ψ    

∫   (38) 11 

After performing the integration, Eq. (38) becomes, 12 

1, 2,

2, 1,

1 1( , )
2 2 2

out in p out in p
p out

in in

Z Z
P Z erf erf

σ σΓ Γ

    Ψ − Ψ − ∆Φ Ψ − Ψ − ∆Φ Ψ = −       Ψ − Ψ      
, (39) 13 

by using the definition of error function.   14 

 However, it is more convenient to express the probability density function ( , )Ψp outP Z  as 15 

a function of response mobility *
pZ , instead of Ψout . From the definition of *

pZ  given in Eq. (13), 16 

it can be seen that *( , ) ( , )= ∆Φ Ψp p p outP Z Z P Z . Then, 17 
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            (40) 2 

It can be shown by inserting Eq. (26) into Eq. (40) that, 3 

* * * *1 1
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*

( ) ( )1( , )
2 2 2σ σΓ Γ
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  (41) 4 

The above equation is further nondimensionalized using a normalized instrument response 5 

mobility *
pZ , defined as 

*
* p
p

p

ZZ Z= .  Then, 6 
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where 
*

* p
p

p

ZZ Z
∆

∆ =  and 2 .
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 8 

From the definition of 
max

*
pZ introduced earlier in Eq. (30), expression for *( , )p pP Z Z  can be 9 

further simplified to: 10 

max max
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p p p p
p p
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 ,  (43) 11 
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Eq. (43) gives the probability density that a particle’s mobility pZ  will be measured as 1 

normalized response mobility *
pZ . *( , )p pP Z Z  reaches its maximum value at * 1pZ =  (i.e. when the 2 

response mobility *
pZ  is same as particle mobility pZ ). In the non-diffusing limit as 0σ → , the 3 

first and second error function in Eq. (43) approach 1 and -1 respectively, and we 4 

have
max

* *( , ) 1p p pP Z Z Zβ→ .  5 

Evaluation of *( , )p pP Z Z  requires knowledge of non-dimensional spread factor σ that 6 

characterizes the broadening of the transfer function due to particle diffusion.  An analytical 7 

expression for spread factor σ was obtained using analysis similar to that used by Stolzenburg 8 

(1988), and is presented in Appendix A. The expression of σ is given by 9 

max

2
22 1 * 2 *2 72(1 ) ( )p

s

aPe x Z x
l

σ β−
  
 = + + Θ 
   

,      (44) 10 

where Pe is the Peclet number defined as p x

B

Z E a qVPe D k T= = .  Function *( )xΘ  is given by 11 

( )
* *3 *4 *522*

0
( ) 1

3 2 5
x x x xx x x d x

 
Θ = − = − + 

 
∫ ,      (45) 12 

where *x is the location of centroid particle trajectory at the exit of the separator.  *x can be 13 

obtained by solving Eq. (22) for given *
pZ , 

max

*
pZ , and β.  The transfer function *( , )p pP Z Z  can be 14 

calculated using Eq. (43), (44), and (45). 15 

Fig. 6(a)-(c) show calculated transfer function *( , )p pP Z Z  for particles of different sizes 16 

in Units 2, 3, and 4. Also shown are the values of 
max

*
pZ corresponding to each particle size in 17 

respective unit.  The shape of the transfer function varies considerably across different particle 18 
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sizes and FIMS units. Since the transfer function is based on the normalized instrument response 1 

mobility, the width of the distribution is a direct measure of the relative uncertainty in measured 2 

mobility; wider the distribution, larger the relative uncertainty.  For a given FIMS unit, the 3 

transfer function becomes narrower for particles with smaller diameters, indicating lower relative 4 

uncertainties in measured mobility.  This may seem counterintuitive at first, considering the fact 5 

that smaller particles have larger diffusivities.  However, it can be explained as follows. 6 

According to Eq. (43) width of the transfer function depends on two parameters 
max

*β pZ and 7 

σ. 
max

*β pZ accounts for uncertainties due to finite stream width of aerosol flow, whereas σ takes 8 

into account the spreading of transfer function due to Brownian diffusion. According to Eq. (43), 9 

width of the transfer function decreases with decreasing 
max

*β pZ and σ. Though the absolute 10 

uncertainty 
max

*
pZβ remains constant regardless of the particle size (according to Eq.(27)), the 11 

relative uncertainty
max

*
pZβ , however, decreases with increasing particle mobility (or decreasing 12 

particle size). Similarly, nondimensional spread factor σ also decreases with increasing particle 13 

mobility, even though the dimensional spread factor (σΓ) increases with decreasing particle size. 14 

Increase in σΓ is only minor compared to the increase in particle mobility pZ such that the net 15 

effect is decreasing σ with increasing pZ . Thus lower values of 
max

*
pZβ and σ for small particles 16 

result in narrower transfer functions.  17 

Fig. 6 also shows the transfer functions of 15, 48, and 173 nm particles measured in Units 18 

2, 3, and 4 respectively. These particles correspond to the smallest sizes (highest mobilities) 19 

measured in their respective units (
max

*
pZ =1), and have similar centroid particle trajectory. As 20 

shown in Fig. 6, the FIMS transfer function becomes broader as the particle size decreases from 21 
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173nm in unit 4 to 15nm in unit 2. The spread factors (σ) for 15, 48, and 173nm particles are 1 

0.028, 0.009, and 0.003, respectively. For 15 nm particles in unit 2, the transfer function exhibits 2 

substantial broadening due to Brownian diffusion. As Brownian diffusion becomes negligible for 3 

larger particles, the shape of the transfer function resembles a box function as shown earlier for a 4 

case of non-diffusing particles (Fig. 2(b)-(c)). 5 

 6 

6. COMPARISON OF FIMS AND DMA 7 

6.1 Comparison of transfer functions of FIMS and DMA 8 

Fig. 7 shows comparison of transfer functions of TSI cylindrical DMA and the FIMS for 9 

non-diffusing particles.  The non-diffusing DMA transfer function was calculated for aerosol and 10 

sheath flow of 1, and 10 lpm respectively, and equal aerosol and monodisperse flows.  Transfer 11 

function of FIMS is based on a total flow rate of Qt=9.7 lpm for a 1µm particle, with other 12 

parameters listed in table 1(a)-(b).  The shapes of the transfer function are quite different for the 13 

two instruments.  The DMA transfer function for non-diffusing particles is a triangle, whereas 14 

that of the FIMS is a rectangle. Also, shown in the inset in Fig. 7 are idealized transfer functions 15 

for both instruments. The base width of the non-diffusing DMA transfer function is 2β, with a 16 

height of unity.  The width of the non-diffusing FIMS transfer function is 
max

*
pZβ  with height 17 

equal to ( )max

*1 pZβ .  For non-diffusing particles, the DMA transfer function remains same for 18 

particles with different mobilities.  In contrast however, the FIMS transfer function becomes 19 

narrower as 
max

*
pZ  decreases as discussed earlier. 20 

 21 

6.2 Comparison of mobility resolution of FIMS and DMA. 22 
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When particle Brownian diffusion is taken into account, the FIMS mobility resolution 1 

d
FIMSR  *

 
  ∆ 

p

fwhh

Z
Z

 can be calculated using Eq. (43). Fig 7(a)-(d) show the resolution d
FIMSR  of all 2 

four FIMS units over the size range of 5 nm-1 µm. Also plotted in each figure is mobility 3 

resolution of non-diffusing particles ( nd
FIMSR ) based on Eq. (30).   For comparison, Fig. 7 also 4 

presents the mobility resolutions of TSI cylindrical DMA ( DMAR ) and TSI nano-DMA ( nDMAR ), 5 

that take into account particle diffusion. Resolutions of the two DMA were calculated using an 6 

aerosol flow rate of 1 lpm, and sheath flow rate of 10 lpm.  7 

The resolution of FIMS for non-diffusing particles ( nd
FIMSR ) decreases with increasing 8 

diameter in each unit from about 50 at 
max

*
pZ =1 to about 5 at 

max

*
pZ =10 in each unit. This is 9 

characteristically different, and apparently counterintuitive, in comparison to the trend in the 10 

DMA resolution.  For both cylindrical and nano DMAs, the resolution of non-diffusing particles 11 

is constant, and is given by the reciprocal of aerosol-to-sheath flow rate ratio (1 DMAβ ).  12 

Irrespective of particle size, all (nondiffusing) particles have the same centroid particle 13 

streamline in DMA. Consequently, at a given aerosol and sheath flow rate, resolution of DMA 14 

remains constant. However in case of FIMS, since each particle follows a different trajectory, the 15 

ratio of aerosol flow to the total flow bounded by the particle trajectory at separator exit is 16 

different. This can be further explained by transforming Eq. (30) using a position-dependent ratio 17 

of flow rates xβ , defined as ( )*
x aQ Q xβ = . Then, resolution R of FIMS for a non-diffusing 18 

particle can be written as 19 

( )* 1
2 2

*

1 1aQ
p x

p a x x

Q xZ
R

Z Q
β

β β

− −
= = = ≅

∆
,       (46) 20 
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Thus analogous to the case of DMA, Eq. (46) shows that the mobility resolution of FIMS for 1 

non-diffusing particles is given by the reciprocal of effective flow ratio xβ .  Since xβ decreases 2 

with increasing *x , the resolution increases with increasing particle mobility. Note that, for 3 

particle with maximum mobility ( )max

*
pZ measured by FIMS, ( )*

tQ x Q= , xβ β= , and the 4 

resolution of the FIMS reaches its maximum value of 1
β . 5 

Comparison of d
FIMSR  and nd

FIMSR in Units 1 and 2 clearly shows the degradation of FIMS 6 

resolution due to particle diffusion.  As particle diffusivity becomes negligible in Units 3 and 4, 7 

the resolution based on Eq. (43) is very close to that given by Eq.(30). Mobility resolution of 8 

FIMS ( d
FIMSR ) is higher than that of nano-DMA for particles smaller than ~12nm (

max

*
pZ =5.7) in 9 

Unit 1 and ~35nm (
max

*
pZ =5.21) in Unit 2.  d

FIMSR  falls below that of DMA in Units 3 and 4 at 10 

max

*
pZ greater than about 5. As discussed earlier in the design considerations, the operating 11 

conditions of FIMS are chosen assuming a minimum acceptable mobility resolution of 5. The 12 

mobility resolution of FIMS can be further improved by reducing the flow rate ratio β, as is 13 

shown in later discussions.   14 

 The influence of total flow rate Qt and flow rate ratio β on the resolution of FIMS was 15 

also investigated. Table 4 shows mobility resolution of FIMS ( d
FIMSR ) at various total flow rates 16 

for a range of particle diameters.  The voltage across the electrodes in the separator was changed 17 

accordingly to maintain the same measurement range for each case. Particles with 
max

*
pZ closer to 18 

unity (smaller particles) exhibit greater improvement in resolution with increasing Qt.  The 19 

resolution of 15 and 26 nm particles increased by 40%, and 30% respectively when the total flow 20 

rate is increased from 7 lpm to 15 lpm.  In contrast, resolution of 47 nm particles increases only 21 
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by 1.7%. Increasing Qt reduces the particle residence time in the separator, which leads to 1 

smaller diffusional spreading of particles.  Since the broadening of transfer function due to 2 

particle diffusion is substantial for smaller particles with high diffusivity, increasing Qt will 3 

result in greater improvements in mobility resolution for small particles.  For larger particles 4 

however, the uncertainty in measured mobility is mainly dictated by flow rate ratio β. As a result, 5 

increasing Qt doesn’t have a significant effect on mobility resolution of larger particles. Table 5 6 

shows FIMS resolution at various aerosols-to-sheath flow rate ratios ( β ). β has a strong 7 

influence on the measurement resolution, especially for large particles.  Resolution increases by 8 

29% for 15nm particle, 83% for 26nm, 150% for 36nm, and 218% for 47nm particle as β is 9 

decreased from 0.05 to 0.014.  This clearly indicates that the mobility resolution of larger 10 

particles can be significantly improved by operating the instrument at lower β. 11 

 While the degradation of resolution due to particle diffusion can be reduced by increasing 12 

the total flow rate Qt, a higher total flow requires longer condenser to grow particles into 13 

detectable droplets, which may further lead to much longer condenser length. An alternative 14 

approach would be to reduce the length of the separator, similar to the design of the nano–DMA 15 

that increases the mobility resolution by reducing its column length.  Table 6 shows the mobility 16 

resolution for particles measured by Unit 2 with different separator lengths. Again, same 17 

measurement range was maintained for all cases by varying the separator voltage. As expected, 18 

reducing the separator length results in greater improvement in the resolution of smaller 19 

particles.  Resolution of 15 nm particles increases from 20.9 to 36.7 whereas the resolution of 47 20 

nm particles only increases from 5.4 to 5.6. 21 

The best mobility resolution can be achieved in each unit by using the shortest possible 22 

separator length. However, in the suggested FIMS configurations in Table 1(a) for Units 2-4, 23 
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separator length was maintained constant for all units. Advantage of such a design is that a single 1 

unit can be interchangeably used as unit 2-4 by simply changing the separator voltage. 2 

 3 

7. SUMMARY AND CONCLUSIONS 4 

A novel Fast Integrated Mobility Spectrometer is described for characterizing aerosol 5 

size distributions with high time and size resolution, and excellent counting statistics. FIMS 6 

combines electrical mobility-based classification and particle counting in a single unit, and 7 

eliminates the need for voltage scanning required in traditional scanning DMA techniques. As a 8 

result, aerosol size distributions can be obtained at sub-second time intervals.  9 

A theoretical framework has been developed to obtain the transfer function of FIMS, 10 

accounting for uncertainties originating from particle Brownian diffusion, and finite stream 11 

width of aerosol flow. The FIMS transfer function was used to characterize measurement 12 

resolution of the instrument over a wide range of operating conditions. Results show that a 13 

decade of mobility can be measured in a single FIMS unit with a minimum mobility resolution of 14 

5. The mobility resolution of FIMS increases with decreasing particle size, which is attributed to 15 

the higher effective flow rate ratios for smaller particles. Compared to conventional cylindrical 16 

DMA operated under typical operating conditions, the resolution of FIMS is much higher for 17 

smaller particles, and is comparable to that of DMA for larger particles. The counting statistics 18 

of FIMS measurements were also investigated. It was shown that for a typical remote continental 19 

aerosol, 1 s measurement time provides excellent signal-to-noise ratio.  20 

Detailed numerical simulations were also carried out to study the particle transport and 21 

growth kinetics in FIMS. Results indicate excellent activation efficiencies for particles larger 22 
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than 5 nm. Particles as small as 5 nm can be grown into droplets larger than 120 µm to facilitate 1 

their reliable optical detection.  2 
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APPENDIX A 1 

This appendix describes the derivation of spread factor σ required to evaluate *( , )p pP Z Z  2 

in Eq. (43).  Similar to the work of Stolzenburg (1988), a few approximations were made in the 3 

derivation of the spread factor.  It was assumed that only diffusion in the direction orthogonal to 4 

the particle stream function (cross-stream direction denoted by χ; see Fig. 2) was significant, and 5 

streamwise (s-direction) diffusion was negligible. Particle losses to the walls of the separator 6 

were also neglected.  The root mean square displacement of particles from the centroid particle 7 

trajectory is a function of time according to Einstein equation (Fuchs, 1964) 8 

2 2d D dtχ = .          (47) 9 

The distribution of particles is Gaussian with variance 2 2
χσ χ= . χσ can be related to σ Γ by 10 

(Stolzenburg, 1988) 11 

χσ σ
χΓ

 ∂Γ
=  ∂ 

.          (48) 12 

With χ=0 on the particle stream line Γ, the variation of Γ with χ can be approximated by the 13 

Taylor series expansion (Stolzenburg, 1988): 14 

0
0

( , )s
χ

χ

χ
χ=

=

∂Γ
Γ ≅ Γ +

∂
. (49) 15 

Let r represent the particle position vector, at 0χ = , both 
χ

∂
∂

r  and ∇Γ  are perpendicular to the 16 

particle streamline and we have  17 

2 2. (1). x yv v v
χ χ

∂Γ ∂
≅ ∇Γ = + =

∂ ∂
r , (50) 18 

where v is the magnitude of particle velocity.  Combining Eq. (48) and (50), we have  19 
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v χσ σΓ = . (51) 1 

Since the particle diffusivity D is constant, total diffusional spreading can then be calculated by 2 

integrating σΓ over the path of the trajectory (Stolzenburg 1988): 3 

( ) ( )2 2 2 2 2 22
exit exit exit exit

entrance entrance entrance entrance
d d v v d D v dtχ χσ σ σ σΓ Γ= = = =∫ ∫ ∫ ∫     (52) 4 

The particle velocity is given by 5 

2 2 2 2 2( ) ( )= + = +x y y p xv v v u x Z E         (53) 6 

where ( )yu x can be evaluated using Eq. (20).  Inserting Eq. (53) into (52), we have 7 

( )
2

2 262 1 ( )σ Γ

  = − +       
∫

exit t
p xentrance

QD x x Z E dt
ab

.      (54) 8 

Noting ( ) ( )x p xx v t a Z E t a= = ,  we can change the integration variable t in Eq. (54) to x : 9 

( )
* 22

2 2
2 2 0

62 4 1 ( )
( ) ( )

σσ Γ
     = = − +       ∆Φ ∆Φ      

∫
x t

p x
p p p x

QD ax x Z E d x
Z Z ab Z E

,   (55) 10 

where *x is the location of the particle centroid trajectory at the separator exit.  After carrying out 11 

the integration, we can simplify the above equation to, 12 

max

2
22 1 * 2 *2 72(1 ) ( )p

s

aPe x Z x
l

σ β−
  
 = + + Θ 
   

,      (56) 13 

where Pe is the Peclet number defined as p y

B

Z E a qVPe D k T= = , q is the total electric charge 14 

on the aerosol particle, kB is Boltzmann’s constant, and T is the temperature.  Function *( )xΘ  is 15 

given by 16 

( )
* *3 *4 *522*

0
( ) 1

3 2 5
x x x xx x x d x

 
Θ = − = − + 

 
∫ ,      (57) 17 
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where *x can be obtained by solving Eq. (22) for given *
pZ , 

max

*
pZ , and β.  1 
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Table 1(a).  Key geometric dimensions of the proposed FIMS units. 
Dimension Unit 1 Unit 2-4 
Distance between electrode plate, a (cm) 1 1 
Width of plate electrodes, b (cm) 10 10 
Length of plate electrodes, ls (cm ) 5 20 
Length of condenser, lc (cm) 30 30 
 
 
 
 
 
 
 
Table 1(b). Operating parameters of the four FIMS units that cover the particle size range from 5 
to 1000nm at β=0.02. 

Voltage (V) 

Unit maxpZ  
Diameter 

Range (nm) 
Qt=9.7lpm 

Qa=0.19lpm 
Qt=11.85lpm 
Qa=0.23lpm 

Qt=15 lpm 
Qa=0.3 lpm 

1 8.60×10-6 5-15 37.52 45.84 58.02 
2 9.75×10-7 15-47 73 90 128 
3 1.07×10-7 47-173 750 916 1202 
4 1.07×10-8 173-1000 7411 9054 11461 



 41

Table 2. Parameters used in particle growth simulations. 
Parameters Values/Expressions 
Saturation vapor pressure of butanol, satp  ( )1362.39

94.4210 ^ 7.4768 T++  

Molecular weight of butanol, bM  74.123 g. mole-1 
Surface tension of butanol, sσ  24.6 dynes. cm-1 

Effective diffusivity of butanol, '
vD  ( )( )

1
2 2' 21 v b

c p

D M
v v RTd

D D π
α

 
= + 

 
 

Diffusivity of butanol, vD  0.0810 cm2 s-1 

Density of butanol, lρ  0.810 g cm-3 

Effective thermal diffusivity of air, '
ak  ( )( )

1
2 2' 21 a a

T p p

k M
a a RTd c

k k π
α ρ

 
= + 

 
 

Thermal diffusivity of air, ak  ( ) 34.39 0.071 10T −+ ×  
Heat capacity of air, pc  1.005 J g-1 K-1 
Mass and thermal accommodation coefficients, 

cα , and Tα  
0.045 

Latent heat of butanol, vH∆  583 J g-1 
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Table 3. Summary of particle transport and growth simulations.  Results are averaged over 10 
replicate simulations. 

x-coordinate of particle (mm) Diameter, pd  
(nm) 

y§=ls y = ls + lc 

15 9.619 9.612 
18 6.488 6.469 
26 3.953 3.948 
36 2.795 2.802 
47 2.101 2.104 

§ distance from aerosol entrance
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Table 4. Mobility Resolutions of the particles measured by the FIMS Unit 2. A constant 
max

*
pZ of   

9.75×10-7 m2/V.s and β=0.02 were maintained at all flow rates. 
 Resolution 

pd (nm)→ 15 (1)¥ 26 (2.9) 36 (5.5) 47 (9.1) 
Flow Qt (lpm)     

7 17.8 10.2 7.5 5.2 
9 19.7 11.3 7.8 5.4 

11 21.5 12.3 8.3 5.5 
13 23.6 13.0 8.5 5.5 
15 25.2 13.4 8.7 5.5 

¥ Numbers in parenthesis indicate 
max

*
pZ for each diameter 
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Table 5. Mobility Resolutions of FIMS Unit 2 at different β values.  A constant 
max

*
pZ of  

9.75×10-7m2/V.s and Qt=9.7 lpm were maintained at all flow rates. 
 

  Resolution 
 

pd  15nm 26nm 36nm 47nm 

β max

*
pZ  1 2.9 5.5 9.1 

0.050  16.2 6.8 3.7 2.2 
0.033  18.8 9.4 5.4 3.3 
0.025  20.0 10.7 6.9 4.4 
0.020  20.9 11.6 8.0 5.4 
0.017  20.7 12.1 8.7 6.2 
0.014  20.9 12.5 9.3 7.0 
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Table 6. Mobility Resolutions of FIMS Unit 2 with different separator lengths (ls). A constant 

max

*
pZ of 9.75×10-7m2/V.s and Qt=9.7 lpm were maintained at all flow rates. 

 
  Resolution 
 

pd  15nm 26nm 36nm 47nm 

ls (cm) max

*
pZ  1 2.9 5.5 9.1 

5  36.7 16.5 9.2 5.6 
10  28.2 14.3 9.0 5.6 
15  23.6 13.0 8.5 5.5 
20  20.9 11.6 8.0 5.4 
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Figure Caption 

 
1 Schematic figure showing the main components of the FIMS. 

 
2 (a) Definition of key streamlines used in derivation of the FIMS transfer 

function. Also shown are key features of  (b) non-diffusing transfer function in 
terms of Ψ coordinate, and (c) in terms of *

pZ  coordinates. 
 

3 Contour plot showing simulated distributions of saturation ratios (solid black 
lines) of n-butanol and equilibrium Kelvin diameters (grey dotted line, nm) 
inside the condenser.  
 

4 Trajectories of charged and uncharged particles in the FIMS. Also shown are 
contours representing spatial distribution of grown droplet diameters for 5nm 
particle.  
 

5 Calculated counting statistics of FIMS measurements of (a) a typical remote 
continental aerosol for a sampling time of 1s and (b) a typical marine aerosol for 
a sampling time of 1 and 8s. 
 

6 Transfer functions of representative particle diameters in Units 2, 3, and 4. 
 

7 Comparison of non-diffusing transfer functions of the TSI cylindrical DMA and 
the FIMS. 
 

8 Mobility resolution of the FIMS over the particle size range of 5-1000 nm. Also 
shown are the resolutions of TSI cylindrical DMA and nano-DMA. 
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